An analytic reconstruction method for PET based on cubic splines
نویسندگان
چکیده
منابع مشابه
Reliability Estimation Based on Cubic Splines
software quality attribute and Software reliability estimation is a hard problem to solve accurately. However for management of software quality and standard practice of the organization, accurate reliability estimation is important. Non-homogeneous Poisson Process (NHPP) models and Artificial Neural Network (ANN) models are among the most important software reliability growth models. In this p...
متن کاملA Local Lagrange Interpolation Method Based on C Cubic Splines on Freudenthal Partitions
A trivariate Lagrange interpolation method based on C1 cubic splines is described. The splines are defined over a special refinement of the Freudenthal partition of a cube partition. The interpolating splines are uniquely determined by data values, but no derivatives are needed. The interpolation method is local and stable, provides optimal order approximation, and has linear complexity.
متن کاملA local Lagrange interpolation method based on C1 cubic splines on Freudenthal partitions
A trivariate Lagrange interpolation method based on C cubic splines is described. The splines are defined over a special refinement of the Freudenthal partition of a cube partition. The interpolating splines are uniquely determined by data values, but no derivatives are needed. The interpolation method is local and stable, provides optimal order approximation, and has linear complexity.
متن کاملCubic splines method for solving fourth-order obstacle problems
In this paper, we develop a new cubic spline method for computing approximate solution of a system of fourth-order boundary value problems associated with obstacle, unilateral and contact problems. It is shown that the present method is of order two and gives approximations which are better than those produced by some other collocation, finite difference and spline methods. Numerical examples a...
متن کاملConstrained Interpolation via Cubic Hermite Splines
Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation. It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2014
ISSN: 1742-6596
DOI: 10.1088/1742-6596/490/1/012128