An analytic reconstruction method for PET based on cubic splines

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reliability Estimation Based on Cubic Splines

software quality attribute and Software reliability estimation is a hard problem to solve accurately. However for management of software quality and standard practice of the organization, accurate reliability estimation is important. Non-homogeneous Poisson Process (NHPP) models and Artificial Neural Network (ANN) models are among the most important software reliability growth models. In this p...

متن کامل

A Local Lagrange Interpolation Method Based on C Cubic Splines on Freudenthal Partitions

A trivariate Lagrange interpolation method based on C1 cubic splines is described. The splines are defined over a special refinement of the Freudenthal partition of a cube partition. The interpolating splines are uniquely determined by data values, but no derivatives are needed. The interpolation method is local and stable, provides optimal order approximation, and has linear complexity.

متن کامل

A local Lagrange interpolation method based on C1 cubic splines on Freudenthal partitions

A trivariate Lagrange interpolation method based on C cubic splines is described. The splines are defined over a special refinement of the Freudenthal partition of a cube partition. The interpolating splines are uniquely determined by data values, but no derivatives are needed. The interpolation method is local and stable, provides optimal order approximation, and has linear complexity.

متن کامل

Cubic splines method for solving fourth-order obstacle problems

In this paper, we develop a new cubic spline method for computing approximate solution of a system of fourth-order boundary value problems associated with obstacle, unilateral and contact problems. It is shown that the present method is of order two and gives approximations which are better than those produced by some other collocation, finite difference and spline methods. Numerical examples a...

متن کامل

Constrained Interpolation via Cubic Hermite Splines

Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation.  It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2014

ISSN: 1742-6596

DOI: 10.1088/1742-6596/490/1/012128